skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Azalee, Bostroem K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present extensive optical observations of a nearby Type Ia supernova (SN Ia), SN 2021hpr, located in the spiral galaxy NGC 3147 at a distance of ∼45 Mpc. Our observations cover a phase within ∼1–2 days to ∼290 days after the explosion. SN 2021hpr is found to be a spectroscopically normal SN Ia, with an absoluteB-band peak magnitude of M max ( B ) 19.16 ± 0.14 mag and a postpeak decline rate of Δm15(B) =  1.0 ± 0.01 mag. Early time light curves showed a ∼7.0% excess emission compared to a homogeneously expanding fireball model, likely due to SN ejecta interacting with a companion or immediate circumstellar matter (CSM). The optical spectra of SN 2021hpr are overall similar to those of normal SNe Ia, but characterized by prominent detached high-velocity features (HVFs) of Siiiand Caiiin the early phase. After examining a small sample of well-observed normal SNe Ia, we find that the HVFs are likely common for the subgroup with early excess emission. The association of an early bump feature with the HVFs could be attributed to density or abundance enhancement at the outer layer of the exploding star, likely as a result of interactions with companion/CSM or experiencing more complete burning. Nevertheless, the redshifted Feiiand Niiilines in the nebular-phase spectra of SN 2021hpr, contrary to the blueshift trend seen in other SNe Ia showing early bump features, indicate its peculiarity in the explosion that remains to be understood. 
    more » « less
    Free, publicly-accessible full text available May 8, 2026